Arid erosion mapping: comparing LiDAR and structure from motion

Author:

Retallack AngusORCID,Campbell Dillon,Finlayson Graeme,Raja Segaran Ramesh,Ostendorf Bertram,Hennekam Molly,Rifai Sami,Lewis Megan

Abstract

Rapid development and uptake in uncrewed aerial vehicles (UAVs) for environmental monitoring, specifically using three-dimensional data from LiDAR and structure from motion (SfM), has enabled improved condition assessment, including fine-scale erosion monitoring. Comparing the precision of LiDAR and SfM for measuring erosion is essential in enabling appropriate method selection. Additionally, knowledge regarding optimal flight heights allows for consideration of the trade-off among survey areas, flight times and precision. We assessed UAV-based LiDAR and SfM for providing high-precision digital surface models (DSM) of substantial gully erosion on a conservation reserve in the southern Australian arid rangelands. The gullies exist in low-slope chenopod shrublands with calcareous soils, and are of significant management concern, with erosion occurring rapidly over short periods following irregular and intense rainfall events. Root mean squared error (RMSE) values for SfM-derived DSMs with resolutions of 2, 4 and 6 cm were lower than comparable LiDAR datasets (SfM = 0.72–1.39 cm; LiDAR = 2.08–3.15 cm). Additionally, 2 cm SfM-derived datasets exhibit notably lower RMSE values than 4 and 6 cm datasets (2 cm = 0.72 cm; 4–6 cm = 2.08–3.15 cm). Change detection over the 1-year study period highlighted erosion in locations of management concern. We propose that, although both methods are of value, SfM is preferred over LiDAR because of its simplicity, reduced cost, and the additional monitoring capabilities of visible-colour imagery, with no notable sacrifice in precision. Visible-colour survey areas and times can be optimised by increasing flight height without dramatic losses in precision. The use of either method will be of great benefit for the monitoring of arid gully erosion and assessing the effectiveness of management interventions, allowing adaptive management and leading to improved condition of arid rangelands into the future.

Publisher

CSIRO Publishing

Reference36 articles.

1. Comparing high accuracy t-LiDAR and UAV-SfM derived point clouds for geomorphological change detection.;ISPRS International Journal of Geo-Information,2021

2. Dynamics of erosion and deposition in a partially restored valley-bottom gully.;Land,2021

3. Assessing the short-term inter-annual growth of the largest documented gully network in South Africa using UAV and SfM methodology.;Physical Geography,2023

4. Bastin G, ACRIS Management Committee (2008) ‘Rangelands 2008: taking the pulse (Broken Hill Complex bioregion).’ (National Land & Water Resources Audit: Canberra, ACT, Australia)

5. Rangeland monitoring using remote sensing.;Arid Land Research and Management,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3