Author:
Babourina Olga,Hawkins Barbara,Lew Roger R.,Newman Ian,Shabala Sergey
Abstract
Mechanisms underlying changed K + uptake by plantsat low pH need to be deciphered. One possibility is that K+ acquisition is under the strict control of plasmamembrane potential (E m ), which,in turn, is affected by external pH. To test this hypothesis, we used themicroelectrode ion flux measurement (MIFE ) technique tostudy net K + and H +fluxes near Arabidopsis root hairs at different externalpH, KCl concentrations and clamped Em . Lowering the solution pH led to strong H+ influx, K + efflux andsignificant E m depolarisation.Addition of K + to the bathing media causedsignificant net K + uptake when external pH wasover the range 5.5–6.0. At external pH below 5.0, however, correlationbetween K + availability and net K+ uptake was negative. To explain this apparentparadox, measurements of net K + and H+ fluxes from the root hair surface were performedconcurrently with E m clamped at different values above and below the restingpotential (approx. –180 mV). Our data revealed a strong dependence ofnet K + flux on the clamping voltage. Clamping atvalues more negative than the resting potential caused a significant increasein K + uptake into the root hair; clamping at lessnegative values (–20 and 0 mV) caused significant net K+ efflux from the cell. Qualitatively similarresults were observed for net H + flux. Ourobservations indicate direct control of K + flux bychanging E m , and suggest thatE m depolarisation could be themain reason for the observed K + efflux at low pH.
Subject
Plant Science,Agronomy and Crop Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献