K+ transport by Arabidopsis root hairs at low pH

Author:

Babourina Olga,Hawkins Barbara,Lew Roger R.,Newman Ian,Shabala Sergey

Abstract

Mechanisms underlying changed K + uptake by plantsat low pH need to be deciphered. One possibility is that K+ acquisition is under the strict control of plasmamembrane potential (E m ), which,in turn, is affected by external pH. To test this hypothesis, we used themicroelectrode ion flux measurement (MIFE ) technique tostudy net K + and H +fluxes near Arabidopsis root hairs at different externalpH, KCl concentrations and clamped Em . Lowering the solution pH led to strong H+ influx, K + efflux andsignificant E m depolarisation.Addition of K + to the bathing media causedsignificant net K + uptake when external pH wasover the range 5.5–6.0. At external pH below 5.0, however, correlationbetween K + availability and net K+ uptake was negative. To explain this apparentparadox, measurements of net K + and H+ fluxes from the root hair surface were performedconcurrently with E m clamped at different values above and below the restingpotential (approx. –180 mV). Our data revealed a strong dependence ofnet K + flux on the clamping voltage. Clamping atvalues more negative than the resting potential caused a significant increasein K + uptake into the root hair; clamping at lessnegative values (–20 and 0 mV) caused significant net K+ efflux from the cell. Qualitatively similarresults were observed for net H + flux. Ourobservations indicate direct control of K + flux bychanging E m , and suggest thatE m depolarisation could be themain reason for the observed K + efflux at low pH.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3