Inactivated Sendai-virus-mediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis

Author:

Song Bong-Seok,Kim Ji-Su,Yoon Seung-Bin,Lee Kyu-Sun,Koo Deog-Bon,Lee Dong-Seok,Choo Young-Kug,Huh Jae-Won,Lee Sang-Rae,Kim Sun-Uk,Kim Sang-Hyun,Kim Hwan Mook,Chang Kyu-Tae

Abstract

Somatic cell nuclear transfer (SCNT) is a powerful tool, not only for producing cloned animals, but also in revealing various early developmental events. However, relatively little is known regarding the biological events and underlying mechanism(s) directly associated with early development of SCNT embryos. Here, we show that production of high-quality bovine SCNT blastocysts is dependent on the method used for fusion and the associated reduction in endoplasmic reticulum (ER) stress. During fusion between the donor cell and the enucleated oocyte, electrofusion triggers spontaneous oocyte activation, accompanied by an increase in intracellular Ca2+ and improper nuclear remodelling. These events can be greatly reduced by the use of Sendai virus (SV)-mediated fusion. Moreover, SV-SCNT improves the blastulation rate and blastocyst quality, defined by the number and ratio of inner cell mass and trophectoderm cells in each blastocyst, in comparison with electrofusion-mediated SCNT (E-SCNT). Interestingly, expression of ER-stress-associated genes and blastomere apoptosis were significantly increased in E-SCNT embryos. These increases could be reversed by inhibition of ER stress or by using the SV-mediated fusion method. Collectively, these results indicate that SV-mediated fusion improves the developmental competence and quality of SCNT blastocysts, by reducing ER-stress-associated apoptosis.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3