Nitrogen metabolism by ruminal microorganisms: current understanding and future perspectives

Author:

Morrison M,Mackie RI

Abstract

This review presents an outline of our current understanding of ruminal nitrogen metabolism from three perspectives: proteolytic microorganisms and their enzymes, intraruminal recycling of microbial protein, and enzymes of ammonia assimilation. Some of the pending advances and future research opportunities in these areas are also discussed. The 'smugglin' concept appears to offer the potential to inhibit peptide-utilizing bacteria selectively in the rumen, as demonstrated by initial studies with Prevotella ruminicola. The relative contributions of protozoa-, bacteriophage-, and self-mediated lysis of bacteria to intraruminal recycling of microbial protein are not yet quantified, and further efforts to understand the biology and dynamics of ruminal bacteriophage and protozoa populations are warranted. In Ruminococcus flavefaciens and Prevotella ruminicola, glutamate dehydrogenase (GDH) appears to be the predominant route of ammonia assimilation irrespective of ammonia concentration, and peptides modulate GDH activity in P. ruminicola. The physiological basis behind the difference between optimal ammonia concentrations for ruminal fibre digestion and microbial protein synthesis remains unclear. Molecular biology techniques extend beyond their application in pursuit of the 'superbug' concept, by offering new and exciting opportunities to understand better microbial physiology, diversity, and ecology. Fundamental research in these areas must be continued if further advances in feed utilization and nutrient retention are to be realized.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3