Variation of Stomatal Diffusive Resistance With Ambient Humidity in Sunflower (Helianthus annuus)

Author:

Aston MJ

Abstract

Experiments with sunflower were set up to supply quantitative information on the relationship between transpiration diffusive resistance and evaporative demand as affected by changes in ambient humidity. The experiments were run on whole plants with the roots in nutrient solution to ensure an adequate supply of water. Particular attention was paid to relating calculated diffusive resistance values with measured diffusion values and visual observations of the stomata. The transpiration diffusive resistance of the stomata was found to increase in a linear manner as the water vapour concentration difference between leaf and surrounding air increased. Changes in calculated diffusive resistance were paralleled by changes in the diffusion of nitrous oxide through the stomata. Visual observation showed that the stomata closed as resistance increased and vice versa. Stomata from both adaxial and abaxial surfaces of the leaf demonstrated increases in diffusive resistance with increasing evaporative demand but the response of the adaxial surface change was not always concurrent with that of the abaxial surface. Leaf water content did not change as evaporative demand was changed, reflecting the observation that uptake of water through the roots equalled the amount lost by transpiration. It was concluded that changes in diffusive resistance were directly related to the stomatal aperture and that the primary response was at the level of the stomatal apparatus. There was no evidence of stomatal control resulting from lowered tissue water content. Anomalous results may be obtained in gas exchange experiments where a constant area of leaf is sealed into a cuvette. Tests indicate that errors arise where the leaf is held too firmly.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3