Histopathology comparison and phenylalanine ammonia lyase (PAL) gene expressions in Fusarium wilt infected watermelons

Author:

Chang P.-F. L.,Hsu C.-C.,Lin Y.-H.,Chen K.-S.,Huang J.-W.,Liou T.-D.

Abstract

Fusarium wilt disease of watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai), caused by Fusarium oxysporum f. sp. niveum (FON), is one of the limiting factors of worldwide watermelon production. In this study, a Fusarium wilt resistant watermelon JSB, which was derived from a spontaneous mutation of the susceptible Sugar Baby (SB), was used to investigate histopathology. The number and diameter of xylem vessels in the root (10 mm below the shoot base) of resistant JSB plants were significantly higher than those in susceptible SB plants. At 9 days post inoculation (dpi), using the plate assay on Nash-PCNB media, FON could be recovered from 86% of the roots in the symptomless plants of both watermelon lines, and from 55% and 64% of the stem segments (5 mm above the shoot base) in resistant and susceptible plants, respectively. In paraffin and free-hand tissue sections, at 8, 13, and 35 dpi, the xylem of roots and stems close to the soil surface in resistant watermelon JSB plants was also colonised by FON, but to a much lower percentage than the susceptible SB ones. No colonisation below the middle of stems was observed in the resistant JSB plants. The susceptible plants grown in infested soil were all dead by 35 dpi, while the resistant plants remained healthy. These observations suggest that reducing FON colonisation in the vascular systems of the host may contribute to the resistance in JSB. Furthermore, the higher expression of the phenylalanine ammonia lyase (PAL) gene in JSB induced by FON and the effects of PAL inhibitor on the resistance of JSB suggested that PAL is involved in resistance of watermelon to Fusarium wilt pathogen.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3