Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic

Author:

Navratilova Jana,Raber Georg,Fisher Steven J.,Francesconi Kevin A.

Abstract

Environmental context Despite high levels of complex organoarsenic compounds in marine organisms, arsenic in seawater is present almost entirely as inorganic species. We examine the arsenic products from a marine alga allowed to decompose under simulated natural coastal conditions, and demonstrate a multi-step conversion of organic arsenicals to inorganic arsenic. The results support the hypothesis that the arsenic marine cycle begins and ends with inorganic arsenic. Abstract Time series laboratory experiments were performed to follow the degradation of arsenic compounds naturally present in marine algae. Samples of the brown alga Ecklonia radiata, which contains three major arsenosugars, were packed into 12 tubes open to air at one end only, and allowed to naturally decompose under moist conditions. During the subsequent 25 days, single tubes were removed at intervals of 1–4 days; their contents were cut into four sections (from open to closed end) and analysed for arsenic species by HPLC/ICPMS following an aqueous methanol extraction. In the sections without direct contact with air, the original arsenosugars were degraded primarily to arsenate via two major intermediates, dimethylarsinoylethanol (DMAE) and dimethylarsinate (DMA). The section with direct contact with air degraded more slowly and significant amounts of arsenosugars remained after 25 days. We also report preliminary data suggesting that the amount of non-extractable or recalcitrant arsenic (i.e. insoluble after sequential extractions with water/methanol, acetone, and hexane) increased with time. Furthermore, we show that treatment of the pellet with 0.1-M trifluoroacetic acid at 95°C solubilises a significant amount of this recalcitrant arsenic, and that the arsenic is present mainly as a cationic species of currently unknown structure.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3