Relationship of arsenic speciation and bioavailability in mine wastes for human health risk assessment

Author:

Diacomanolis Violet,Noller Barry N.,Taga Raijeli,Harris Hugh H.,Aitken Jade B.,Ng Jack C.

Abstract

Environmental context X-ray absorption near-edge spectroscopy (XANES) was applied to give arsenic chemical forms directly in the solid phase of mine wastes from two mine sites, including fluvial dispersion. The arsenic speciation data explained the variation of in vitro bioaccessibility and in vivo bioavailability (rat uptake) data of the mine wastes. The As speciation from XANES fitting supported the hypothesis that when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents is significantly lower. Abstract X-ray absorption near-edge spectroscopy (XANES) was used for arsenic speciation in mine processing and waste samples from two mines in northern Australia. XANES fitting of model compound spectra to samples was used, in combination with in vitro bioaccessibility data for the pure compounds, to predict bioaccessibility of each mine waste sample (Pearson’s correlation R2=0.756, n=51). The XANES fitting data for a smaller set of the samples (n=12) were compared with in vivo bioavailability and in vitro bioaccessibility data. The bioavailability of arsenic (As) in the mine wastes, which is dependent, at least in part, on its oxidation state, was found to be <14% (0.9–13.5%) for arsenite (AsIII) and <17% (3.5–16.4) for arsenate (AsV). Arsenic bioaccessibility in the mine wastes ranged from 8–36% in the stomach to 1–16% in the intestinal phase, indicating that a small portion of the total As concentration in the mine waste was available for absorption. A significant correlation showed that bioaccessibility can be used as a predictor of bioavailability. The XANES results support that bioavailability and bioaccessibility results were very similar and show a strong association with the presence of ferric arsenate and As sulfides. It can be concluded that, when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents exposed to the mine waste was significantly lower than that estimated based on a 100% bioavailability often employed for the risk assessment.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3