Effects of climate change on fish reproduction and early life history stages

Author:

Pankhurst Ned W.,Munday Philip L.

Abstract

Seasonal change in temperature has a profound effect on reproduction in fish. Increasing temperatures cue reproductive development in spring-spawning species, and falling temperatures stimulate reproduction in autumn-spawners. Elevated temperatures truncate spring spawning, and delay autumn spawning. Temperature increases will affect reproduction, but the nature of these effects will depend on the period and amplitude of the increase and range from phase-shifting of spawning to complete inhibition of reproduction. This latter effect will be most marked in species that are constrained in their capacity to shift geographic range. Studies from a range of taxa, habitats and temperature ranges all show inhibitory effects of elevated temperature albeit about different environmental set points. The effects are generated through the endocrine system, particularly through the inhibition of ovarian oestrogen production. Larval fishes are usually more sensitive than adults to environmental fluctuations, and might be especially vulnerable to climate change. In addition to direct effects on embryonic duration and egg survival, temperature also influences size at hatching, developmental rate, pelagic larval duration and survival. A companion effect of marine climate change is ocean acidification, which may pose a significant threat through its capacity to alter larval behaviour and impair sensory capabilities. This in turn impacts on population replenishment and connectivity patterns of marine fishes.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3