Author:
Miró Manuel,Fitz Walter J.,Swoboda Siegfried,Wenzel Walter W.
Abstract
Environmental context. There is a need for slightly invasive techniques capable of in-situ probing of target analytes in environmental compartments. Owing to its passive sampling mode and small probe dimensions, microdialysis-based dosimetry is an appealing tool for monitoring of solute concentrations in both water bodies and pore soil waters with minimum disturbance of natural equilibrium. The development of field applications is challenging but will provide novel insights as to the speciation and bioaccessibility of environmental pollutants, e.g. trace metals, at high spatial resolution.
Abstract. In-situ sampling of soil pore water is still a challenge for environmental scientists. Here, microdialysis is explored for probing metal concentrations in soil pore water at soil moisture contents ranging from 50 to 115% of the maximal water holding capacity and is compared with traditional sampling by suction cups. Metal concentrations obtained by the suction cup technique were consistently larger than those measured in the dialysate. Good agreement was obtained for Pb and Cu at soil moistures close to saturation after accounting for diffusion resistances whereas corrected Ni and Cd concentrations in the dialysates exceeded those measured by the suction cup technique. These deviations reflect inherent differences in the sampling mode and effects of soil heterogeneity at the microscale. Microdialysis offers new opportunities to probe solute concentrations at high spatial resolution and minimal disturbance of soil conditions at environmental interfaces such as the plant rhizosphere or at the transition between forest floors and the mineral soil.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献