Diagnosis, extent, impacts, and management of subsoil constraints in the northern grains cropping region of Australia

Author:

Dang Y. P.,Dalal R. C.,Buck S. R.,Harms B.,Kelly R.,Hochman Z.,Schwenke G. D.,Biggs A. J. W.,Ferguson N. J.,Norrish S.,Routley R.,McDonald M.,Hall C.,Singh D. K.,Daniells I. G.,Farquharson R.,Manning W.,Speirs S.,Grewal H. S.,Cornish P.,Bodapati N.,Orange D.

Abstract

Productivity of grain crops grown under dryland conditions in north-eastern Australia depends on efficient use of rainfall and available soil moisture accumulated in the period preceding sowing. However, adverse subsoil conditions including high salinity, sodicity, nutrient imbalances, acidity, alkalinity, and high concentrations of chloride (Cl) and sodium (Na) in many soils of the region restrict ability of crop roots to access this stored water and nutrients. Planning for sustainable cropping systems requires identification of the most limiting constraint and understanding its interaction with other biophysical factors. We found that the primary effect of complex and variable combinations of subsoil constraints was to increase the crop lower limit (CLL), thereby reducing plant available water. Among chemical subsoil constraints, subsoil Cl concentration was a more effective indicator of reduced water extraction and reduced grain yields than either salinity or sodicity (ESP). Yield penalty due to high subsoil Cl was seasonally variable, with more in-crop rainfall (ICR) resulting in less negative impact. A conceptual model to determine realistic yield potential in the presence of subsoil Cl was developed from a significant positive linear relationship between CLL and subsoil Cl: Since grid sampling of soil to identify distribution of subsoil Cl, both spatially across landscape and within soil profile, is time-consuming and expensive, we found that electromagnetic induction, coupled with yield mapping and remote sensing of vegetation offers potential to rapidly identify possible subsoil Cl at paddock or farm scale. Plant species and cultivars were evaluated for their adaptations to subsoil Cl. Among winter crops, barley and triticale, followed by bread wheat, were more tolerant of high subsoil Cl concentrations than durum wheat. Chickpea and field pea showed a large decrease in yield with increasing subsoil Cl concentrations and were most sensitive of the crops tested. Cultivars of different winter crops showed minor differences in sensitivity to increasing subsoil Cl concentrations. Water extraction potential of oilseed crops was less affected than cereals with increasing levels of subsoil Cl concentrations. Among summer crops, water extraction potential of millet, mungbean, and sesame appears to be more sensitive to subsoil Cl than that of sorghum and maize; however, the differences were significant only to 0.7 m. Among pasture legumes, lucerne was more tolerant to high subsoil Cl concentrations than the others studied. Surface applied gypsum significantly improved wheat grain yield on soils with ESP >6 in surface soil (0–0.10 m). Subsurface applied gypsum at 0.20–0.30 m depth did not affect grain yield in the first year of application; however, there was a significant increase in grain yield in following years. Better subsoil P and Zn partially alleviated negative impact of high subsoil Cl. Potential savings from improved N fertilisation decisions for paddocks with high subsoil Cl are estimated at ~$AU10 million per annum.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3