Precision of estimating individual feed intake of grazing animals offered low, declining pasture availability

Author:

Lukuyu Margaret,Paull David R.,Johns William H.,Niemeyer Dominic,McLeod Jessica,McCorkell Bruce,Savage Darryl,Purvis Ian W.,Greenwood Paul L.

Abstract

Measurement of intake of individual grazing animals remains one of the fundamental challenges to improving efficiency of livestock production. The use of wireless sensor networks (WSN) shows potential for this purpose and requires benchmark data to underpin the necessary algorithm development. This study aimed to provide benchmark data and enable improved precision in estimating pasture intake when pasture availability is low and declining. Each of 10 Angus steers with a mean liveweight ± s.d. of 326 ± 46 kg was randomly allocated to an individual grazing plot. The plots comprised a monoculture of Italian ryegrass (Lolium multiflorum cv. Surge), with estimated initial pasture biomass availability ≤1100 kg DM/ha, provided at three levels of pasture availability (low, medium and high), achieved by varying plot sizes (0.2, 0.3 and 0.4 ha). Pasture intake was estimated using two pasture disappearance-based techniques (rising-plate meter and capacitance meter) using regression equations of daily pasture biomass estimates over an 11-day pasture intake period, and two chemical marker-based techniques (dosed n-alkanes and chromic oxide). Both pasture disappearance-based techniques showed high variability in estimating pasture biomass, with mean coefficients of variation between repeated-measurements of 28% for the capacitance meter and 44% for the plate meter, although daily biomass measurements over the duration of the study using the two devices were highly correlated (r = 0.82). Mean pasture intake estimates across all four techniques ranged from 3.4 to 10.7 kg DM/day. The estimates of pasture intake differed between techniques but not between biomass availability treatments. Mean of pasture intake estimates made using the plate meter were consistently higher than for the other three techniques. The correlation coefficients between the intake estimates determined using the pasture disappearance-based techniques, and between their rankings, were 0.61 and 0.58, respectively. Intake estimates obtained using pasture disappearance and the chemical marker methods were not correlated apart from between chromic oxide and the plate meter (r = 0.51). Further refinement of these techniques and more studies over a wider range of pasture conditions are needed. It is critical to understand the limits within which each of the pasture intake methodologies will produce reliable results that can then be used as benchmark data for the development of predictive algorithms using WSN.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3