Determining the depth and rate of soil movement down the soil profile using an environmental tracer: a hillslope scale assessment

Author:

Hancock G. R.ORCID,Gibson A.,Senanayake I. P.,Cox Tristan

Abstract

Context Soil materials can be delivered to depth from both in situ and ex situ materials. Here, we examine a hillslope in an agricultural environment that has been used for cropping and cattle grazing for over 150 years and a parallel area where cattle have been excluded for approximately 20 years. The exclusion area is a shelterbelt and also provides ecological services. Aims To quantify the depth and rate of down profile soil movement using the environmental tracer 137Cs at points along a hillslope profile. Methods 137Cs concentration is measured to bedrock at regular intervals both inside and outside a fenced of ecological services area pre-drought (2015) and post-drought (2021). In Australia. 137Cs is the by-product of nuclear weapons use and testing from1945 to 1972. Therefore, this places an age constraint on any labelled soil. Key results Results show that soil materials can move down the soil profile to reach bedrock at decadal time scales. An important finding is that materials from the surface can reach depths of up to 80 cm near the hillslope crest and up to 2.2 m at the base of the hillslope. Conclusions This demonstrates a relatively rapid translocation of surface material. Implications The method provides the ability to quantify the rapid movement of soil components and demonstrates the potential for deep sequestration of soil organic carbon. The results demonstrate the potential for soil amendments and agrochemicals to be rapidly transported to depth. The findings suggest that cattle exclusion has no impact on the movement of soil materials down the profile over the 20-year exclusion period.

Funder

A next generation spatially distributed model for soil profile dynamics and pedogenesis incorporating soil geochemistry and organic matter

Carbon, nutrient and sediment dynamics in a semi-arid catchment

Publisher

CSIRO Publishing

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3