Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses

Author:

Onyango Dorothy A.ORCID,Entila Fredrickson,Dida Mathew M.,Ismail Abdelbagi M.,Drame Khady N.

Abstract

Iron (Fe) is a fundamental element involved in various plant metabolic processes. However, when Fe uptake is excessive, it becomes toxic to the plant and disrupts cellular homeostasis. The aim of this study was to determine the physiological and biochemical mechanisms underlying tolerance to Fe toxicity in contrasting rice varieties adapted to African environments. Four varieties (CK801 and Suakoko 8 (tolerant), Supa and IR64 (sensitive)) selected from our previous work were analysed in more detail, and the first part of this study reports morphological, physiological and biochemical responses induced by Fe toxicity in these four varieties. Morphological (shoot length, root length, number of lateral roots), physiological (photosynthesis rate, stomatal conductance, transpiration rate, fluorescence, relative water content and cell membrane stability) and biochemical (tissue Fe, chlorophyll pigments, soluble sugars, protein and starch) traits were measured, as appropriate, on both shoot and root tissues and at different time points during the stress period. Fe toxicity significantly (P≤0.05) reduced growth and metabolism of all the four varieties. Tolerant varieties showed more lateral roots than the sensitive ones, under Fe toxic conditions as well as higher photosynthesis rate, chlorophyll content and cell membrane stability. Strong dilution of Fe concentration in cells was identified, as one of the additional tolerance mechanisms used by CK801, whereas Suakoko 8 mainly used strong mobilisation of carbohydrates at the early stage of the stress period to anticipate metabolite shortage. Traits associated with Fe toxicity tolerance in this study could be specifically targeted in trait-based breeding programs of superior lowland rice varieties tolerant of Fe toxicity.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3