Turgor, solute import and growth in maize roots treated with galactose

Author:

Pritchard Jeremy,Tomos A. Deri,Farrar John F.,Minchin Peter E. H.,Gould Nick,Paul Matthew J.,MacRae Elspeth A.,Ferrieri Richard A.,Gray Dennis W.,Thorpe Michael R.

Abstract

It has been observed that extension growth in maize roots is almost stopped by exposure to 5 mm d-galactose in the root medium, while the import of recent photoassimilate into the entire root system is temporarily promoted by the same treatment. The aim of this study was to reconcile these two apparently incompatible observations. We examined events near the root tip before and after galactose treatment since the tip region is the site of elongation and of high carbon deposition in the root. The treatment rapidly decreased root extension along the whole growing zone. In contrast, turgor pressure, measured directly with the pressure probe in the cortical cells of the growing zone, rapidly increased by 0.15 MPa within the first hour following treatment, and the increase was maintained over the following 24 h. Both tensiometric measurements and a comparison of turgor pressure with local growth rate demonstrated that a rapid tightening of the cell wall caused the reduction in growth. Single cell sampling showed cell osmotic pressure increased by 0.3 MPa owing to accumulation of both organic and inorganic solutes. The corresponding change in cell water potential was a rise from –0.18 MPa to approximately zero. More mature cells at 14 mm from the root tip (just outside the growing region) showed a qualitatively similar response. Galactose treatment rapidly increased the import of recently fixed carbon (RFC) into the whole root as deduced by 11C labelling of photoassimilate. In contrast, there was a significant decrease in import of recently fixed carbon into the apical 5mm concomitant with the increase in turgor in this region. No decrease in import of recently fixed carbon was observed 5–15 mm from the root tip despite the increase in cortical cell turgor. These data are consistent with direct symplastic connections between the growing cells and the phloem supplying the solutes in the apical, but not the basal, regions of the growing zone. Hence, the inhibition of growth and the elevation of solute import induced by galactose are spatially separated within the root.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3