GsNAC2 gene enhances saline-alkali stress tolerance by promoting plant growth and regulating glutathione metabolism in Sorghum bicolor

Author:

Wu RongORCID,Kong Lingxin,Wu Xiao,Gao Jing,Niu Tingli,Li Jianying,Li Zhijiang,Dai LingyanORCID

Abstract

The quality and yields of Sorghum bicolor plants are seriously affected by saline-alkali conditions. NAC (NAM, ATAF, and CUC) transcription factors are plant specific and have various functions in plant development and response to various stresses. To investigate how GsNAC2 functions in sorghum responses to saline-alkali treatment, the characteristics of GsNAC2 were analysed by bioinformatics methods, and NaHCO3:Na2CO3 (5:1, 75 mM, pH 9.63) saline-alkali stress solution was applied when sorghum plants were 2 weeks old. The research results show that GsNAC2 belongs to the NAC gene family. GsNAC2 was significantly induced by saline-alkali treatment and strongly expressed in sorghum leaves. GsNAC2-overexpressing sorghum plants had increased plant height, dry weight, moisture content, root activity, leaf length, chlorophyll content, stomatal conductance, relative root activity, relative chlorophyll content, relative stomatal conductance, and relative transpiration rate after saline-alkali treatment. Lower H2O2 and O2− levels, relative permeability of the plasma membrane, and malondialdehyde (MDA) content were found in GsNAC2-overexpressing sorghum. In transcriptome analysis, clusters of orthologous groups (COG) analysis showed that a high proportion of differentially-expressed genes (DEGs) participated in defence mechanisms at each processing time, and 18 DEGs related to synthetic glutathione were obtained. Gene expression analysis revealed that key genes in glutathione biosynthesis pathways were upregulated. GR and GSH-Px activities were increased, and GSH accumulated more with the overexpression of GsNAC2 after saline-alkali treatment. Furthermore, these results suggest that GsNAC2 acts as a potentially important regulator in response to saline-alkali stress and may be used in molecular breeding to improve crop yields under adverse environmental conditions.

Funder

Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong

National Key R&D Program of China

the Postdoctoral Start-up Science Foundation of Heilongjiang

Natural Science Foundation of Heilongjiang Province

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3