Studies of soil water drawdowns by single radish roots at decreasing soil water content using computer-assisted tomography

Author:

Hamza M. A.,Anderson S. H.,Aylmore L. A. G.

Abstract

Application of computer-assisted tomography to the attenuation of X-rays has been used to compare the drawdowns in soil water content associated with radish roots at starting soil water contents (θv) of 0.3 cm3/cm3 and 0.1 cm3/cm3, respectively. Decreasing soil water content results in an increase in the appearance of ‘beam hardening’. Decreasing soil water content from 0.3 to 0.1 cm3/cm3 caused the transpiration rate to decrease by 6–10 times. This was presumably due to a reduction in the water potential gradient across the root membrane. The transpiration rate decreased less rapidly than did the water content at the soil–root interface, suggesting some osmotic adjustment by the leaves. This osmotic adjustment would allow the plant to maintain transpiration rate even at relatively low soil water content. The drawdown distances associated with roots growing at the lower soil water content were 8 times smaller than those at the high soil water content and the value of θv at the soil–root interface at the end of the transpiration period was 2.5 times lower. The radish roots exhibited a temporary slight decrease in diameter after the transpiration commenced followed by a significant temporary increase. However, root diameter stabilised around its original value when the plant attained an almost steady water uptake rate. Despite the complexity arising from ‘beam hardening’, CAT scanning can provide valuable information on processes at the root–soil interface.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3