A framework for prioritising prescribed burning on public land in Western Australia

Author:

Howard Trevor,Burrows Neil,Smith Tony,Daniel Glen,McCaw Lachlan

Abstract

A risk-based framework for targeting investment in prescribed burning in Western Australia is presented. Bushfire risk is determined through a risk assessment and prioritisation process. The framework provides principles and a rationale for programming fuel management with indicators to demonstrate that bushfire risk has been reduced to an acceptable level. Indicators provide targets for fuel management that are applicable throughout the state and can be customised to meet local circumstances. The framework identifies eight bushfire risk management zones having broad consistency of land use, fire environment and management approach, which combine to create a characteristic risk profile. Thirteen fuel types based primarily on structural attributes of the vegetation that influence fire behaviour are recognised and used to assign models for fuel accumulation and fire behaviour prediction. Each bushfire risk management zone is divided into fire management areas, based on the management intent. These are areas where fuels will be managed primarily to minimise the likelihood of fire causing adverse impacts on human settlements or critical infrastructure, to reduce the risk of bushfire at the landscape scale or to achieve other land management outcomes. Indicators of acceptable bushfire risk are defined for each fire management area and are modified according to the distribution of assets and potential fire behaviour in the landscape. Risk criteria established in the framework can be converted to spatially represented targets for fuel management in each zone and can be reported against to measure the effectiveness of the fuel management program. In areas where the primary intent is to reduce the risk of bushfire at the landscape scale, managers have flexibility to apply prescribed fire in ways that maintain and enhance ecosystem services, nature conservation and landscape values through variation in the seasonality, intensity and scale of planned burning.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3