Effects of sodium accumulation on soil physical properties under an effluent-irrigated plantation

Author:

Balks M. R.,Bond W. J.,Smith C. J.

Abstract

Effluent irrigation commonly results in increased soil sodicity, because of the medium-to-high salinity and high sodium concentrations of many effluents. The exchangeable sodium percentage (ESP) of soils at the Wagga Wagga Effluent Plantation Project increased from <2% to >25% at some depths within the surface 0·6 m of soil, after 5 seasons of irrigation with either (i) treated sewage effluent or (ii) bore water with similar salinity and sodium adsorption ratio (SAR). A survey of dispersion index (DI) and saturated hydraulic conductivity (Ksat) was carried out to investigate the effects of increased soil sodicity on soil physical properties. The Ksat was measured after 5 irrigation seasons at 2 depth intervals (0·15-0·45 m and 0·5-0·8 m) using both bore water and distilled water, and compared with measurements made at the same sites using bore water before irrigation commenced. Both DI and ESP were measured at each of 3 depths in the surface 0·6 m of soil. The DI in distilled water was positively correlated with ESP, with finer soil textures having higher DI for the same ESP. When measured in bore water or effluent, DI was very low and not related to ESP. Ksat was significantly lower after 5 irrigation seasons, and significantly lower in distilled water than in bore water. However, there was no relationship between Ksat and ESP. It was concluded that the increased ESP caused an increased tendency for soil dispersion but was not shown unequivocally to lead to decreased Ksat. The increased sodicity does not seem likely to affect continued use of the land for effluent irrigation, but may affect its suitability for alternative uses that involve physical disturbance of the soil, for example, by cultivation.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3