Seasonal changes in chlorine and methoxyl content of leaves of deciduous trees and their impact on release of chloromethane and methanol at elevated temperatures

Author:

McRoberts W. Colin,Keppler Frank,Harper David B.,Hamilton John T. G.

Abstract

Environmental context Chloromethane is the most abundant naturally produced chlorine-containing organic compound, responsible for ~16% of chlorine-catalysed stratospheric ozone destruction. A significant source of this gas is emission from biomass by reaction between chloride ion and methoxyl groups of the biopolymers pectin and lignin. The seasonal changes in the chlorine and methoxyl pools observed in leaves of several deciduous tree species have implications for understanding chlorine volatilisation during biomass burning and estimation of the global chloromethane budget. Abstract Atmospheric chloromethane (CH3Cl) plays a role in the destruction of stratospheric ozone. Previous studies suggest an important source of this gas is emission from leaves and leaf litter at ambient and elevated (150–350°C) temperatures. In this study, the total chlorine and OCH3 content of leaves of the deciduous temperate tree species ash, beech, Norway maple and oak were measured throughout the 2004 and 2005 growing seasons. The total chlorine content increased with leaf age. The overall seasonal accumulation varied between five- and twenty-one fold, dependent on both year and species. Throughout the 2004 growing season, the OCH3 pool and the release of CH3Cl and methanol (CH3OH) from leaves of ash and Norway maple were monitored on heating to 350°C. The amounts of CH3Cl released increased linearly as leaf chlorine accumulated whereas emissions of CH3OH did not substantially change. Conversion of chlorine to CH3Cl was lower in the spring than during the summer and autumnal senescence period, ranging from 22 to 58%. No correlation was found between leaf OCH3 content and either CH3Cl or CH3OH release. The percentage conversion of OCH3 to the summed concentrations of CH3OH and CH3Cl ranged from 41 to 66%. The plant components pectin and lignin were identified as two major sources of the CH3 group in CH3Cl and CH3OH and emissions ceased when the OCH3 pool contributing the methyl moiety was exhausted (>350°C). These findings have implications for estimation of CH3Cl release during biomass burning and for our understanding of chlorine volatilisation during energy production from biomass.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3