The reaction of copper ions and hypochlorite with minesite soils in relation to fungicidal activity

Author:

Gerritse RG,Adeney JA,Baird G,Colquhoun I

Abstract

Phytophthora cinnamomi is a soil-borne pathogenic fungus and is the primary cause of dieback disease in the jarrah forests of south-west Western Australia. Treatments are needed to eliminate the fungus from infected soils. Compounds containing cupric ions (Cu2+) or hypochlorite (ClO-) have a known fungicidal activity against P. cinnamomi, but their efficacy is affected by soil factors. This study explores the possibility of containing P. cinnamomi by treatment of surface materials for haul roads at minesites in infected areas with these compounds. Solution concentrations of Cu2+ between 50 and 100 mg/L are considered to be fungicidally effective against P. cinnamomi. In samples from the lateritic regolith at the Huntly minesite of Alcoa in Western Australia, concentrations in this range are obtained after adding about 0-5 g (range = 0.3-1 g) of Cu2+ per kg of regolith material. Soil materials from mineral sand areas on the Swan Coastal Plain in Western Australia adsorb Cu2+ less strongly than the regolith materials from the Huntly minesite. Addition of about 0.1-0.2 g Cu2+ per kg is sufficient to reach a fungicidal concentration in solution in these soil materials. Movement of Cu2+ from treated surfaces of haul roads to groundwater and surface water can present a problem. For a single application, travel times of Cu2+ in both lateritic regolith and sandy soils were calculated to be = 200 years per metre. A single treatment of materials from the lateritic regolith would be effective for a period of 2-10 years, depending on the selected material. Sandy soils would have to be treated once or twice a year. Colloidal particles in both surface runoff and throughflow can contribute significantly to the spread of copper in the lateritic regolith, but much less in sandy soils. Hypochlorite is rapidly reduced to chloride by organic matter in soils. At additions of about 0.5 g ClO- per gram of organic carbon, however, hypochlorite can be an effective fungicide against P. cinnamomi.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3