POSSMs: a parsimonious speciation model for metals in soils

Author:

Lofts StephenORCID

Abstract

Environmental context Predicting the chemistry of metals is important for understanding their movement and impacts in the environment. Metal chemistry models are generally complex and difficult to apply, but a simpler model, which does not need large amounts of input data, can also provide good results. A simpler model can be more easily included in large-scale models of metal transport and impacts in the environment. Abstract Mechanistic geochemical models are useful for detailed study of the speciation of metals in well-characterised soils, but can be challenging to apply when driving soil compositional data are sparse, for example, at large scales. Empirical models, using minimal driving data, have been developed either for prediction of solid–solution partitioning or for the computation of the free metal ion from the total or geochemically active metal. This work presents an empirical speciation model, POSSMs (ParsimOniouS Speciation of Metals in soils), which predicts the free, solution-bound and sorbed metal in a soil in a single calculation, using a minimal set of soil parameters. The model has been parameterised for Ni, Cu, Zn, Cd and Pb using datasets of geochemically active soil metal and solution phase composition. The parameterised model can also be used to compute the free metal ion from the solution metal. The model was tested by applying it to literature datasets on the speciation of metals in soil solutions and extracts, and on the metal solid–solution partitioning. The performance of the model was comparable to other empirical models of similar complexity. Some test datasets produced biased predictions, particularly in the underestimation of measured free ion at circumneutral and alkaline pH, where the model predicted low free ion concentrations. The model is not a replacement for mechanistic geochemical models, but is a useful tool for soil metal speciation where comprehensive driving data are not available.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3