The Sustainable Grazing Systems Pasture Model: description, philosophy and application to the SGS National Experiment

Author:

Johnson I. R.,Lodge G. M.,White R. E.

Abstract

A biophysical simulation model (the Sustainable Grazing Systems Pasture Model) was developed as an integral part of the Sustainable Grazing Systems National Experiment. It was developed to meet the needs of the researchers both for analysing data and processes at individual sites, and for simulating the outcome of these processes operating in generic pasture systems on a range of soil types, under specific grazing managements. The model was designed to reside on the desktops of individual researchers and for those researchers to be part of its development process.The Sustainable Grazing Systems Pasture Model incorporates the following: a physiological model of pasture species herbage accumulation in response to climatic conditions; the water balance including evapotranspiration, runoff (surface and subsurface), infiltration and drainage; pasture utilisation by grazing animals; a metabolisable energy-based animal growth model; and organic matter and inorganic nutrient dynamics (for nitrogen, phosphorus, potassium and sulfur) including plant uptake, adsorption, leaching, nitrogen fixation by legumes, and atmospheric nitrogen losses. A range of grazing options (set-stocking, rotational grazing and continuous grazing at a variable rate) is available for ewes and lambs, and wethers. Each of the main modules (water, nutrients, pastures and animals) is interconnected. To avoid bias in the influence of any one module, each is described at about the same level of complexity, with the description of any process being restricted to about 5 parameters. The model is hierarchical in structure and most processes are described in terms of a series of fluxes (or, more specifically, flux densities) that have dimensions of amount per area per time.The model can be closely linked to a database specifically developed for the Sustainable Grazing Systems National Experiment to allow easy importing and exporting of climate and experimental data for comparison with model output. This paper gives an overview of the model structure and its output, the process that was used for its development within Sustainable Grazing Systems, and its use by the Sustainable Grazing Systems sites and themes. Comments are provided on the implementation of the development process to assist future programs using a similar approach.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3