Nanoscale zerovalent iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil: proof of concept

Author:

Phenrat TanaponORCID,Hongkumnerd Peerayu,Suk-in Jirapon,Khum-in Vinita

Abstract

Environmental contextCadmium contamination in paddy soil can lead to elevated cadmium concentrations in rice, potentially affecting millions of rice consumers worldwide. This study used nanoscale zerovalent iron to sequester cadmium from soil before using magnetic separation to retrieve cadmium-sorbed particles from the soil slurry. This approach hypothetically resulted in a 97% reduction of cadmium levels in rice, rendering the rice safe for human consumption. AbstractCadmium (Cd) exposure causes serious health effects, including osteopenia, itai-itai disease, kidney disease and cancer. Millions of people are at risk of Cd-contaminated rice consumption resulting from Cd-contaminated paddy soil. While several soil restoration techniques, including phytoremediation (time-consuming) and soil washing using calcium chloride (generating Cd-contaminated wastewater requiring further treatment), face technical challenges, there is room for nanotechnology to offer a rapid and low-cost restoration technique. Here, we propose novel magnet-assisted (ex situ) soil washing using nanoscale zerovalent iron (NZVI) to remove Cd from paddy soil. Conceptually, Cd-contaminated paddy soil is mixed with water and NZVI to create a soil slurry. The NZVI promotes a reduction condition, which accelerates the Cd desorption from the paddy soil to the aqueous phase in the soil slurry. Subsequently, desorbed Cd in water is resorbed onto the NZVI surface, which is retrieved from the soil slurry through magnetic separation, leaving behind treated paddy soil and treated washing water. In our laboratory feasibility study with actual Cd-contaminated paddy soil (191.51±5.54mgkg−1), we found that, although magnet-assisted soil washing using NZVI cannot remove all the Cd from the soil to meet the EU and Thai soil standards (78% removal of total Cd), it effectively removes mobile Cd (exchangeable and carbonate fractions) from the soil (93%), which potentially results in a 97% reduction of cadmium in rice, which is safe for human consumption. The proposed technique has no unacceptable effects on the decline of macro- and micro-nutrients or the germination of rice seed.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3