Author:
Zhang Wei,Zhu Rui,Liu Bin,Ramakrishna Seeram
Abstract
One-dimensional nanostructured semiconductor oxides that can provide a direct electron conduction pathway have received increasing attention as photoelectrodes in dye-sensitized solar cells. In this study, a facile and cost-effective method to produce high-quality TiO2 nanofibres is developed based on an electrospinning technique. In particular, poly(ethylene oxide) was selected and proved to be an excellent matrix polymer for electrospinning owing to its low decomposition temperature, wide availability, and environmental friendliness. In addition to obtaining TiO2 nanofibres with well-controlled morphology and pure anatase, the TiO2 grain size could be easily tuned by changing the preparation conditions. Based on the synthesized TiO2 nanofibres, dye-sensitized solar cells were fabricated and a high energy conversion efficiency of 6.44 % was achieved under illumination with air mass 1.5 (100 mW cm–2) simulated sunlight, which demonstrates the great potential of the synthesized TiO2 nanofibres as efficient photoelectrode material for low-cost dye-sensitized solar cells.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献