The Distribution of Contaminants and the Nature of the Alteration Products in Physically Separated Grains of Altered Ilmenites

Author:

Khor L,Parks T,Lincoln FJ,Graham J

Abstract

So-called ' ilmenite ', 'leucoxene' and 'rutile' grades of commercial heavy mineral concentrates were fractionated magnetically, in the laboratory. In the less magnetic ractions, secondary TiO2 (both anatase and rutile ), formed by the alteration of ilmenite grains, was separated from primary rutile, on the basis of density. The separated fractions were examined by optical and scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods, thereby insights being gained into the nature of secondary contamination in altered ilmenite. Grains of secondary TiO2 are very porous and report with an effective density <4.0 g/cm3 in a Magstream separator. Nearly all of these grains, which were distinctively fawn or dull grey in colour, were shown to contain epitaxially oriented, polycrystalline rutile , by single-grain XRD. The porosity of the grey grains was fine and uniform, � whereas the fawn grains contained coarse pores within a trellis of the oriented rutile. Randomly oriented anatase powder occurred with the oriented rutile in some fawn grains. Such trellis textures could facilitate the subsequent ingress of contaminants. Electron probe microanalysis (EPMA) indicated considerable variation in the level of contaminants, between grains, but the averaged analyses for a given fraction were in broad agreement with bulk analyses by X-ray fluorescence (XRF). XRD of single grains showed that anatase occurred significantly more often in fawn grains that were extracted from EPMA mounts because of their high levels of contaminants. The anatase may provide a high surface area for adsorption of contaminants, and/or be an indicator of a past environment where 'insoluble' oxides have been more mobile.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3