Metal contaminants of emerging concern in aquatic systems

Author:

Batley Graeme E.ORCID,Campbell Peter G. C.ORCID

Abstract

Environmental context There is potential for a range of metals being used in emerging industries to pose a risk if they reach aquatic environments. This is assessed by evaluating known environmental concentrations against available toxicity data. In most instances risks are low with current usage. Areas are identified where additional data are needed. Abstract The environmental concentrations and aquatic toxicity of a range of technology-critical metals comprising platinum group and rare earth group elements, together with gallium, germanium, indium, lithium, niobium, rhenium, tantalum, tellurium and thallium, have been reviewed to determine whether they pose a risk to aquatic ecosystem health. There is a reasonable body of toxicity data for most, but the quality is quite variable, and more data are required. Chronic toxicity EC10 or NOEC values are generally in the low mg L–1 range, far higher than the current environmental concentrations in the ng L–1 range, meaning that the existing risks to ecosystem health are extremely low. Missing are reliable toxicity data for niobium and tantalum, while confounding results for lanthanum toxicity need to be resolved. There is a likelihood that the currently low concentrations of most of these elements will increase in future years. Whether these concentrations are in bioavailable forms remains to be reliably determined. For most of the elements, measured speciation information is scarce, and unfortunately the thermodynamic data required to calculate their speciation are incomplete. In addition to this problem of uncertain speciation for some of these metals, notably those present in oxidation states of III or higher, there is also a need to explore the links between speciation and bioavailability for these higher valence metals. For circumneutral solutions, the calculated concentrations of the free metal ion tend to be very low for these metals and under such conditions the link between metal speciation and bioavailability is unclear.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3