Regulation of human placental fetal vessel tone: role of nitric oxide

Author:

King RG,Gude NM,Di Iulio JL,Brennecke SP

Abstract

Factors affecting fetal vessel resistance have been studied in vitro in bilaterally perfused lobules of human placentae. Potent and efficacious constrictors in this preparation (in order of potency) include endothelin-1 > the thromboxane mimetic U46619 > endothelin-3 > prostaglandin F2 alpha. Inhibitors of eicosanoid synthesis did not affect fetal vessel basal perfusion pressure, nor did they potentiate the effects of the vasoconstrictor U46619. In contrast, the nitric oxide inhibitors N omega-nitro-L-arginine (NOLA), haemoglobin and methylene blue all increased fetal vessel basal perfusion pressure and also increased U46619-induced constriction. Similarly, NOLA markedly potentiated the constrictor effects of endothelin-1, angiotensin II, 5-hydroxytryptamine and bradykinin. These studies therefore provide evidence that NO is important in the maintenance of low basal fetal vessel impedance and also reduces the effects of a number of vasoconstrictor autacoids. Nitric oxide synthase (NOS) activity of human placental homogenates has been measured and shown to be mainly calcium-dependent. Human placental NOS activity was not affected by labour state but was reduced in pre-eclampsia. No evidence was found that in pre-eclampsia raised concentrations of the endogenous NOS inhibitor asymmetric dimethylarginine were responsible for the reduced placental NOS activity. Hence, these studies provide evidence that NO is an important endogenous dilator of the fetal vessels of the human placenta and that reduced NOS activity could contribute to the pathogenesis and/or effects of pre-eclampsia.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3