Effects of land-use change from grassland to forest on soil sulfur and arylsulfatase activity in New Zealand

Author:

Chen C. R.,Condron L. M.,Davis M. R.,Sherlock R. R.

Abstract

The effects of land-use change from grassland to forest on soil sulfur (S) and arylsulfatase enzyme activity were investigated by comparing soils under unimproved grassland and an adjacent 19-year-old exotic forest stand (mixture of Pinus ponderosa and P. nigra). Results showed that concentrations of organic S in topsoil under forest were significantly lower [418 µg/g (0–5 cm), 398 µg/g (5–10 cm)] than corresponding soil depths under grassland [541 µg/g (0–5 cm), 468 µg/g (5–10 cm)]. On the other hand, inorganic S concentrations were significantly higher in soil under forest at all depths compared with grassland. The inorganic S concentration in soil under grassland increased with depth, but there was no significant difference observed at different depths under forest. The decrease in organic S [and organic carbon (C)] in soil under forest was due to the enhanced mineralisation of organic components. The accumulation of inorganic S in the soil profile under forest was mainly attributed to enhanced mineralisation, although decreased leaching, increased sulfate-S adsorption, and increased atmospheric inputs by canopy interception of aerosols could have contributed. Microbial biomass C and S and arylsulfatase activity were higher in topsoil under grassland than forest. Lower arylsulfatase activities under forest compared with grassland at the time of sampling suggest that mineralisation of organic S under forest was not currently mediated primarily by enzyme activity, although enzyme activity may have been important at earlier stages of forest development. Arylsulfatase activity was significantly correlated with soil organic C, water-soluble C, microbial biomass C, total S, organic S, and microbial biomass S in soil under grassland and forest. Significant concentrations of organic S and microbial biomass S were present in the forest floor (litter and fermentation layers). These pools would be important for S cycling and availability in forest ecosystems. S mineralisation, S fractions, microbial biomass S, microbial biomass C.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3