Genotype and environment effects on feed grain quality

Author:

O'Brien L.

Abstract

The extent of genotype and location effects on chemical composition and nutritive value of grains fed to animals was surveyed. The review covered the winter cereals (wheat, barley, oats, and triticale), the summer cereals (sorghum and maize), and the pulses (field pea, lupins, faba beans, and chickpea) when fed to cattle, sheep, poultry, pigs, rats, and mice. The bulk of the literature does not meet the statistical criteria required to differentiate genotype and environment effects. When the criteria were satisfied, significant genotype differences were shown to exist for chemical composition in wheat, barley, triticale, and sorghum, for nutritive value as determined by methods in vitro in wheat, barley, oats, triticale, and sorghum, and in vivo for wheat, barley, triticale, sorghum, and maize. Valid comparisons across grain species are few, but in vitro gas production ranks wheat > oats > barley. Significant location, year, genotype × location, genotype × year, and genotype × location × year effects were reported for nutritive value for some grains. Wheat feeding trials with poultry indicate that environment can affect apparent metabolisable energy (AME) as much as, if not more than, genotype. A greater range in nutritive value appears to exist in barley than in wheat. The information is unclear in the case of triticale, where despite some reports claiming that grain of this species has high lysine content, the difference does not appear to translate to improved performance in animals. Insufficient studies exist for oats despite it being one of the most widely used on-farm feed grains. No examples could be found of studies with rye. The most thoroughly researched grain has been sorghum, which is principally grown in developed countries for feeding to livestock. Here, some definitive studies have been conducted to define the extent of genotype, location, and genotype × environment interaction effects. Scope exists to enhance the nutritive value of sorghum by breeding through modification of endosperm composition, tannin content, and improved protein digestibility. Variation in endosperm composition in maize due to simply inherited mutations provides the opportunity to improve its nutritive value. This review indicates that before any plant breeding is undertaken for feed grain quality, a better understanding of what determines nutritive value and the relative importance of genotype and environment in modulating these factors is required.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3