Reverse Micro-Emulsion Synthesis of Oxygen-Enriched Low-Friction Boron Nitride/Calcium Borate Microspheres

Author:

Yuan Songdong,Yang Canxing,Zhu Xing,Jiang Guodong,Huang Renzhong,Xiong Jian,Ai Qing

Abstract

Oxygen enriched boron nitride microspheres (BNOs) coated with nano-sized calcium borate (CB) were synthesised by a reverse micro-emulsion method, in which calcium chloride and sodium borate were selected as the calcium and boron source, respectively. The phase identification and chemical bonding of the composite were confirmed by X-ray driffraction (XRD) and FT-IR spectroscopy. The chemical composition and valence state were determined by X-ray photoelectron spectroscopy (XPS). The morphology and microstructure of the samples were characterised by transmission electron microscopy (TEM) along with surface area analysis. The tribological property of the microspheres as a wear resistance additive in base oil was evaluated by a four-ball tester. The results show that the strawberry-like BNO/CB nanocomposites were fabricated successfully and possess a relatively high friction-reducing and antiwear performance. After the addition of BNO/CB nanocomposites, the friction coefficients of the base oil decreased by 13.3% while the diameter of the grinding spot decreased by 16.4%.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3