Effect of Leaf Position, Expansion and Age on Photosynthesis, Transpiration and Water Use Efficiency of Cotton

Author:

Constable GA,Rawson HM

Abstract

Net photosynthesis, dark respiration and the response to photon flux density were measured on cotton leaves grown in a glasshouse. Leaves at four positions on the plant were examined from their unfolding until 70 days later. Photosynthesis and transpiration per unit of leaf area were unaffected by leaf position and, in all leaves, peak photosynthesis of about 110 ng CO2 cm-2 s-1 was attained 13-15 days after leaf unfolding, when the leaf was 75-90% of maximum area. Photosynthesis was maintained at this rate for only 12 days before declining linearly to values 20% of the maximum when leaves were 70 days old. Transpiration followed a similar pattern reaching a maximum of about 13 �g H2O cm-2 s-1 at 2 kPa vapour pressure deficit (VPD) at 13 days. Stomatal and internal conductances changed in parallel as leaves aged, with the consequence that internal CO2 concentration and water use efficiency remainedessentially constant at 220�ll-1 and 16.8 ng CO2 (�g H2O kPa VPD-1)-1 respectively. Youngest and oldest leaves saturated at lowest light levels (400-800 pE m-2 s-1) while 16-18- day-old leaves had light saturation at 1100 �E m-2 s-1. The initial slope of the light response curves increased as leaves expanded up to 10 days age then remained constant at 0.25 ng CO2 cm-2 (pE m-2)-1. Dark respiration reached a maximum of 1.5 ng CO2 mg-1 s-1 5 days after leaf unfolding, when leaf dry weight was increasing most rapidly. The relationship between the consistent pattern of gas exchange with age and the pattern of morphological development is discussed, along with internal factors associated with age-dependent photosynthesis.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3