Combined elevated temperature and soil waterlogging stresses limit fibre biomass accumulation and fibre quality formation by disrupting protein activity during cotton fibre development

Author:

Chen Yinglong,Chen Binglin,Wang Haimiao,Hu Wei,Wang Shanshan,Zhou ZhiguoORCID

Abstract

Soil waterlogging and high temperature conditions generally occur together, especially in the Yangtze River Valley, China, negatively affecting cotton (Gossypium hirsutum L.) fibre development. Therefore, combined elevated temperature (34.1/29.0°C) and soil waterlogging (6 days) were imposed to study their combined effects on fibre biomass and fibre qualities (length, strength and micronaire). The results showed that in the boll cohort exposed to waterlogging and/or elevated air temperature, combined elevated temperature and soil waterlogging decreased final fibre length (by 8.9–11.3%) and fibre biomass (by 25.8–33.9%) more than either stress individually. A total of 113, 263 and 290 differential abundance proteins were identified related to elevated temperature, waterlogging and the two treatments combined, respectively, in fibres at 15 days after anthesis via the isobaric tags for relative and absolute quantitation technique, which were classified as: carbohydrate and energy metabolism (21.7%), protein metabolism (16.6%), amino acid metabolism (12.8%), intracellular structural components (6.6%), transport (7.9%), oxidation–reduction process (7.9%), signal transduction (5.2%), lipid metabolism (5.2%), stress response (5.2%), nucleic acid metabolism (4.5%), organic acid metabolism (3.4%) and others (2.1%). Both vacuolar ATPase (V-ATPase) and plasma membrane H+-ATPase (PMH+-ATPase) were responsible for fibre length formation, although V-ATPase expression may play a major role in determining fibre cell elongation rather than PM H+-ATPase expression. It was concluded that fibre cell elongation and secondary wall thickening were inhibited mainly by reduced accumulation of osmolytes, blocked synthesis and transport of secondary wall components, and disruption of the cytoskeleton system under combined elevated temperature and soil waterlogging.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3