Remote sensing can locate and assess the changing abundance of hollow-bearing trees for wildlife in Australian native forests

Author:

Owers Christopher J.,Kavanagh Rodney P.,Bruce Eleanor

Abstract

Context Hollow-bearing trees are an important breeding and shelter resource for wildlife in Australian native forests and hollow availability can influence species abundance and diversity in forest ecosystems. A persistent problem for forest managers is the ability to locate and survey hollow-bearing trees with a high level of accuracy at low cost over large areas of forest. Aims The aim of this study was to determine whether remote-sensing techniques could identify key variables useful in classifying the likelihood of a tree to contain hollows suitable for wildlife. Methods The data were high-resolution, multispectral aerial imagery and light detection and ranging (Lidar). A ground-based survey of 194 trees, 96 Eucalyptus crebra and 98 E. chloroclada and E. blakelyi, were used to train and validate tree-senescence classification models. Key results We found that trees in the youngest stage of tree senescence, which had a very low probability of hollow occurrence, could be distinguished using multispectral aerial imagery from trees in the later stages of tree senescence, which had a high probability of hollow occurrence. Independently, the canopy-height model used to estimate crown foliage density demonstrated the potential of Lidar-derived structural parameters as predictors of senescence and the hollow-bearing status of individual trees. Conclusions This study demonstrated a ‘proof of concept’ that remotely sensed tree parameters are suitable predictor variables for the hollow-bearing status of an individual tree. Implications Distinguishing early stage senescence trees from later-stage senescence trees using remote sensing offers potential as an efficient, repeatable and cost-effective way to map the distribution and abundance of hollow-bearing trees across the landscape. Further development is required to automate this process across the landscape, particularly the delineation of tree crowns. Further improvements may be obtained using a combination of these remote-sensing techniques. This information has important applications in commercial forest inventory and in biodiversity monitoring programs.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3