Mitogen-activated protein kinase kinase kinase 8 (MAP3K8) mediates the LH-induced stimulation of progesterone synthesis in the porcine corpus luteum

Author:

Zhang Di,Liu Ying,Cui Yan,Cui ShengORCID

Abstract

Progesterone (P4) synthesized by the corpus luteum (CL) plays a key role in the establishment and maintenance of pregnancy. The LH signal is important for luteinisation and P4 synthesis in pigs. In a previous study, we demonstrated that mitogen-activated protein kinase kinase kinase 8 (MAP3K8) regulates P4 synthesis in mouse CL, but whether the function and mechanism of MAP3K8 in the pig is similar to that in the mouse is not known. Thus, in the present study we investigated the effects of MAP3K8 on porcine CL. Abundant expression of MAP3K8 was detected in porcine CL, and, in pigs, MAP3K8 expression was higher in mature CLs (or those of the mid-luteal phase) than in regressing CLs (late luteal phase). Further functional studies in cultured porcine luteal cells showed that P4 synthesis and the expression of genes encoding the key enzymes in P4 synthesis are significantly reduced when MAP3K8 is inhibited with the MAP3K8 inhibitor Tpl2 kinase inhibitor (MAP3K8i, 10μM). After 12–24h treatment of luteal cells with 100ngmL−1 LH, MAP3K8 expression and P4 secretion were significantly upregulated. In addition, the 10μM MAP3K8 inhibitor blocked the stimulatory effect of LH on P4 synthesis and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in porcine luteal cells. The LH-induced increases in MAP3K8 phosphorylation and expression, ERK1/2 phosphorylation and P4 synthesis were all blocked when protein kinase A was inhibited by its inhibitor H89 (20 μM) in porcine luteal cells. In conclusion, MAP3K8 mediates the LH-induced stimulation of P4 synthesis through the PKA/mitogen-activated protein kinase signalling pathway in porcine CL.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3