Alteration of goat sperm ecto-phosphoprotein phosphatase activity and its distribution on the sperm surface during epididymal maturation

Author:

Barua M.,Nath D.,Majumder G. C.

Abstract

Phosphoprotein phosphatase (ecto-PPase) of goat epididymal sperm outer surface showed a significant increase in its activity at the initial stage of epididymal sperm maturation (up to the proximal corpus region) followed by a sharp fall towards the terminal phase of the maturation event. PPase activity showed nearly the same profile when estimated in intact cells as well as in isolated sperm plasma membrane. The ecto-PPase was purified to apparent homogeneity by using various biochemical fractionation procedures, such as solubilization with Triton X-100, sephadex gel filtration chromatography, concanavalin A–sepharose affinity chromatography and diethylaminoethyl–cellulose ion-exchange chromatography. The isolated PPase has a molecular mass of approximately 36 kDa and an isoelectric point of 5.95. Sperm surface topography of the enzyme was investigated using fluorescein isothiocyanate-conjugated antibody of the purified PPase. The immunofluorescent studies have demonstrated that the isolated PPase is localized on the external surface of viable sperm. Immunocytochemical studies also revealed a marked topographical alteration of ecto-PPase during epididymal transit of the male gametes. Immunoreactivity was observed all over the surface of caput sperm, but was restricted primarily to the anterior tip of the head in the corpus sperm and to the posterior part of the head in cauda sperm cells. The maturation-dependent decrease in PPase activity was also confirmed by immunofluorescent studies. This remarkable maturation-dependent modification of ecto-PPase activity, as well as its distribution on sperm surface, suggest that the ecto enzyme may play an important role in sperm function by regulating the phosphorylation states of the membrane-associated and reproductive fluid phosphoprotein substrates.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3