Leaf nitrogen and phosphorus levels in macadamias in response to canopy position and light exposure, their potential as leaf-based shading indicators, and implications for diagnostic leaf sampling protocols

Author:

Huett D. O.,Gogel B. J.,Meyers N. M.,McConchie C. A.,McFadyen L. M.,Morris S. C.

Abstract

The relationships between leaf nutrient content, leaf age, and within-canopy light exposure were studied in 10–11-year-old Macadamia integrifolia cvv. 660, 781, and 344 at Alstonville (28˚59′S, 149˚E), New South Wales, during autumn and spring 1996. Quantum point sensors were placed at 16 positions in the canopy to give mean 24-hourly photosynthetic photon flux density (PFD) readings, which ranged from 13 to 540 mol/m2.sec. At each of these positions, the youngest terminal leaf (YTL), the youngest fully expanded leaf (FEL) from a current flush, and a 6–7-month-old hardened off leaf (HOL) were sampled. In 1997, at 12 sites in the Alstonville district, leaves of cv. 344 were sampled (FEL and HOL) at 5 equidistant positions from the bottom, a height of 1.2 m (position 1), to the top (position 5), on the N–NE side of trees in late spring. The sites varied in canopy density from 50% to 95% ground cover, and PFD from the bottom shaded position to the top exposed position in the canopy across all sites increased by a factor of 1.3 to 17.9. At Alstonville, leaf parameters [N%, P%, specific leaf weight (SLW), N amount per unit leaf area (N area), and P area] increased (P < 0.001) with increasing PFD. Using regression analyses, the maximum R2 was 0.59. Age affected (P < 0.05) leaf parameters: for N%, N area, and SLW, HOL > FEL = YTL; and for P% and P area, YTL = FEL > HOL. Cultivar did not affect (P > 0.05) N%, N area or SLW; for P% and P area, cv. 660 > 781 > 344 (P < 0.05). At the Alstonville district sites, leaf parameters increased with PFD (P < 0.05). At each tree sampling position there was a weak negative correlation (P < 0.05) between the leaf parameters and percentage ground cover across all sites, which declined with height (and PFD). Nitrogen area and P area gave the highest R values (–0.60 and –0.40 at low canopy positions), and neither was a suitable replacement for percentage ground cover as a leaf-based shading indicator. The slope of the regression line (regression coefficient) between a leaf parameter and tree height for each macadamia site was determined. The regression coefficient for N area gave the best correlation with percentage ground cover (R2 = 0.55, P < 0.01) and may be useful as a leaf-based shading indicator. At position 1, HOL N concentration ranged from 1.3% to 1.8% and P concentration from 0.06% to 0.11% across all sites. At each of the 5 tree positions, the N parameters were very poorly correlated with kernel yield, and for the HOL P parameters, there was a weak negative correlation (R = –0.521 to –0.673, P < 0.05) at tree positions 1 and 2 with kernel yield. Current recommendations to reduce macadamia leaf N concentrations because of detrimental effects of high leaf N on yield were not supported by the current study. Modification of the current diagnostic leaf sampling protocol is recommended to avoid the reduction in leaf N and P concentrations through shading and the cultivar effects on P concentration. We conclude that the current diagnostic leaf N and P standards cannot reliably diagnose the nutritional status of macadamia orchards.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3