New ways of measuring intake, efficiency and behaviour of grazing livestock

Author:

Greenwood Paul L.,Valencia Philip,Overs Leslie,Paull David R.,Purvis Ian W.

Abstract

Wireless sensor networks (WSN) offer a novel method for measuring important livestock phenotypes in commercial grazing environments. This information can then be used to inform genetic parameter estimation and improve precision livestock management. Arguably, these technologies are well suited for such tasks due to their small, non-intrusive form, which does not constrain the animals from expressing the genetic drivers for traits of interest. There are many technical challenges to be met in developing WSN technologies that can function on animals in commercial grazing environments. This paper discusses the challenges of the software development required for the collection of data from multiple types of sensors, the management and analyses of the very large volumes of data, determination of which sensing modalities are sufficient and/or necessary, and the management of the constrained power source. Assuming such challenges can be met however, validation of the sensor accuracy against benchmark data for specific traits must be performed before such a sensor can be confidently adopted. To achieve this, a pasture intake research platform is being established to provide detailed estimates of pasture intake by individual animals through chemical markers and biomass disappearance, augmented with highly annotated video recordings of animal behaviours. This provides a benchmark against which any novel sensor can be validated, with a high degree of flexibility to allow experiments to be designed and conducted under continually differing environmental conditions. This paper also discusses issues underlying the need for new and novel phenotyping methods and in the establishment of the WSN and pasture intake research platforms to enable prediction of feed intake and feed efficiency of individual grazing animals.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3