A new conceptual model for the warm-water breakdown of the coral - algae endosymbiosis

Author:

Wooldridge Scott A.

Abstract

The symbiosis between reef-building corals and their algae endosymbionts is sensitive to temperature stress, which makes coral reefs vulnerable to climate change. However, a precise understanding of the capacity for the symbiosis to adapt to climate change is currently restricted by the lack of coherent explanation for the set of cellular events leading to its warm-water breakdown (= coral bleaching). Here, a new coral bleaching model is proposed in which the triggering event is a disruption to the ‘dark’ photosynthetic reactions of the algae endosymbionts, primarily due to a limited availability of CO2 substrate around the Rubisco enzyme (ribulose-1,5-bisphosphate carboxylase). Paradoxically, this CO2-limiting condition may be enhanced by the modern increase in atmospheric CO2 partial pressure (pCO2). Importantly, the model delivers a new standpoint from which to explain: (i) upper thermal bleaching thresholds; and (ii) the mechanism underpinning endosymbiont shuffling. Overall, the model leaves little doubt as to the diminished stability and functioning (i.e. resilience) of the coral–algae endosymbiosis due to the rising pCO2 and warming trend in the upper ocean surface layer. It is concluded that whole-colony bleaching is the destructive endpoint to a suite of cellular processes that operate near continuously in modern symbiotic corals.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3