Relationship between oxidative degradation of 2-mercaptobenzothiazole and physicochemical properties of manganese (hydro)oxides

Author:

Liu C. S.,Zhang L. J.,Feng C. H.,Wu C. A.,Li F. B.,Li X. Z.

Abstract

Environmental context. Manganese (hydro)oxide is one kind of the most important natural minerals that are capable of oxidising organic contaminants with a wide range of functionality. However, the oxidative reactivity of manganese (hydro)oxides for organic pollutant degradation may depend on their individual physicochemical properties. It is important to determine a relationship between their oxidative reactivity and physicochemical properties. Abstract. The oxidative reactivity of manganese (hydro)oxides is important for geochemical transformation of organic pollutants. Here, 2-mercaptobenzothiazole (MBT) degradation by six manganese (hydro)oxides, including γ-MnOOH, β-MnO2, α-MnO2, γ-Mn2O3, δ-MnO2, and MO-700, were investigated with different initial MBT concentrations, manganese (hydro)oxide dosages and pH values. The results show the oxidative reactivity of manganese (hydro)oxides towards MBT degradation strongly depends on their physicochemical properties. Specific surface area and reduction potential of manganese (hydro)oxides were positively correlated with MBT degradation rates, whereas pH at the point of zero charge (pHPZC) of manganese (hydro)oxides and apparent activation energy (Ea) were negatively correlated. A high average oxidation state with the same chemical valence always corresponds to high oxidative reactivity. Such findings provide some insights into understanding the transport and fate of organic pollutants in the presence of different manganese (hydro)oxides in the natural environment.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3