Measurements and APSIM modelling of soil C and N dynamics

Author:

Smith C. J.ORCID,Macdonald B. C. T.,Xing H.,Denmead O. T.,Wang E.,McLachlan G.,Tuomi S.,Turner D.,Chen D.

Abstract

Process-based models capture our understanding of key processes that interact to determine productivity and environmental outcomes. Combining measurements and modelling together help assess the consequences of these interactions, identify knowledge gaps and improve understanding of these processes. Here, we present a dataset (collected in a two-month fallow period) and list potential issues related to use of the APSIM model in predicting fluxes of soil water, heat, nitrogen (N) and carbon (C). Within the APSIM framework, two soil water modules (SoilWat and SWIM3) were used to predict soil evaporation and soil moisture content. SWIM3 tended to overestimate soil evaporation immediately after rainfall events, and SoilWat provided better predictions of evaporation. Our results highlight the need for testing the modules using data that includes wetting and drying cycles. Two soil temperature modules were also evaluated. Predictions of soil temperature were better for SoilTemp than the default module. APSIM configured with different combinations of soil water and temperature modules predicted nitrate dynamics well, but poorly predicted ammonium-N dynamics. The predicted ammonium-N pool empties several weeks after fertilisation, which was not observed, indicating that the processes of mineralisation and nitrification in APSIM require improvements. The fluxes of soil respiration and nitrous oxide, measured by chamber and micrometeorological methods, were roughly captured by APSIM. Discrepancies between the fluxes measured with chamber and micrometeorological techniques highlight difficulties in obtaining accurate measurements for evaluating performance of APSIM to predict gaseous fluxes. There was uncertainty associated with soil depth, which contributed to surface emissions. Our results showed that APSIM performance in simulating N2O fluxes should be considered in relation to data precision and uncertainty, especially the soil depths included in simulations. Finally, there was a major disconnection between the predicted N loss from denitrification (N2 + N2O) and that measured using the 15N balance technique.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3