Defining extreme wildland fires using geospatial and ancillary metrics

Author:

Lannom Karen O.,Tinkham Wade T.,Smith Alistair M.S.,Abatzoglou John,Newingham Beth A.,Hall Troy E.,Morgan Penelope,Strand Eva K.,Paveglio Travis B.,Anderson John W.,Sparks Aaron M.

Abstract

There is a growing professional and public perception that ‘extreme’ wildland fires are becoming more common due to changing climatic conditions. This concern is heightened in the wildland–urban interface where social and ecological effects converge. ‘Mega-fires’, ‘conflagrations’, ‘extreme’ and ‘catastrophic’ are descriptors interchangeably used increasingly to describe fires in recent decades in the US and globally. It is necessary to have consistent, meaningful and quantitative metrics to define these perceived ‘extreme’ fires, given studies predict an increased frequency of large and intense wildfires in many ecosystems as a response to climate change. Using the Monitoring Trends in Burn Severity dataset, we identified both widespread fire years and individual fires as potentially extreme during the period 1984–2009 across a 91.2×106-ha area in the north-western United States. The metrics included distributions of fire size, fire duration, burn severity and distance to the wildland–urban interface. Widespread fire years for the study region included 1988, 2000, 2006 and 2007. When considering the intersection of all four metrics using distributions at the 90th percentile, less than 1.5% of all fires were identified as potentially extreme fires. At the more stringent 95th and 99th percentiles, the percentage reduced to <0.5% and 0.05%. Correlations between area burnt and climatic measures (Palmer drought severity index, temperature, energy release component, duff moisture code and potential evapotranspiration) were observed. We discuss additional biophysical and social metrics that could be included and recommend both the need for enhanced visualisation approaches and to weigh the relative strength or importance of each metric.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3