1H NMR metabolomics of earthworm responses to sub-lethal PAH exposure

Author:

Brown Sarah A. E.,Simpson Andre J.,Simpson Myrna J.

Abstract

Environmental context. Polycyclic aromatic hydrocarbons (PAHs) are common contaminants, but there has been limited research investigating the responses of earthworm exposure to sub-lethal PAH concentrations. In this study, 1H nuclear magnetic resonance (NMR) metabolomics was used to characterise the metabolic responses of Eisenia fetida earthworm exposure in contact tests to 10, 50 and 100 μg cm–2 naphthalene, phenanthrene and pyrene. The findings of this study highlight the potential of metabolomics as a tool for monitoring earthworm responses to sub-lethal concentrations of problematic environmental contaminants. Abstract. Metabolic responses of earthworm exposure to the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene and pyrene in contact tests were measured using 1H nuclear magnetic resonance (NMR). Novel metabolites were not detected but principal component analysis (PCA) showed that earthworms exposed to 10, 50 and 100 μg cm–2 naphthalene, phenanthrene and pyrene differed from unexposed (control) earthworms. Partial least-squares-discriminant analysis (PLS-DA) showed that earthworms had statistically significant responses to PAH exposure, except for 10 μg cm–2 naphthalene and 50 μg cm–2 pyrene. Leucine, valine, alanine, lysine and maltose were identified as potential response indicators of PAH exposure, but whether the concentration of these metabolites increased or decreased was PAH- and concentration-dependent. These initial findings reveal the potential of metabolomics for monitoring earthworm responses to sub-lethal PAH exposure and highlight the role of metabolomics as a future tool in ecotoxicology.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3