A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements

Author:

Forthofer Jason M.,Butler Bret W.,Wagenbrenner Natalie S.

Abstract

For this study three types of wind models have been defined for simulating surface wind flow in support of wildland fire management: (1) a uniform wind field (typically acquired from coarse-resolution (~4km) weather service forecast models); (2) a newly developed mass-conserving model and (3) a newly developed mass and momentum-conserving model (referred to as the momentum-conserving model). The technical foundation for the two new modelling approaches is described, simulated surface wind fields are compared to field measurements, and the sensitivity of the new model types to mesh resolution and aspect ratio (second type only) is discussed. Both of the newly developed models assume neutral stability and are designed to be run by casual users on standard personal computers. Simulation times vary from a few seconds for the mass-conserving model to ~1h for the momentum-conserving model using consumer-grade computers. Applications for this technology include use in real-time fire spread prediction models to support fire management activities, mapping local wind fields to identify areas of concern for firefighter safety and exploring best-case weather scenarios to achieve prescribed fire objectives. Both models performed best on the upwind side and top of terrain features and had reduced accuracy on the lee side. The momentum-conserving model performed better than the mass-conserving model on the lee side.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3