Calcification and inorganic carbon acquisition in coccolithophores

Author:

Berry Lorraine,Taylor Alison R.,Lucken Uwe,Ryan Keith P.,Brownlee Colin

Abstract

A number of species of coccolithophorid phytoplankton precipitate calcite inside intracellular vesicles (coccolith vesicles). They can form vast blooms under certain conditions, and account for major fluxes of inorganic carbon (Ci) to the ocean floor. The functions of calcification have been debated for many years, and a role in carbon acquisition has been proposed by several workers. The precipitation of calcite from HCO3- involves the production of protons that can potentially be used to facilitate the use of external HCO3- as a photosynthetic substrate. For this function to be feasible, certain criteria must be met. HCO3- (rather than CO32–) should be the external substrate for calcification, photosynthesis should be facilitated by HCO3- in calcifying cells when CO2 availability is limiting, and the transport of Ci and Ca2+ to the site of calcification should be energetically and kinetically feasible. Considerable evidence exists for HCO3- as the substrate for calcification in coccolithophores. However, evidence for a direct role for calcification in supply of Ci for photosynthesis is less clear. The environmental factors that regulate calcification are still uncertain but appear to be related as much to the availability of nutrients as CO2. Transport of Ci to the intracellular site of calcification and removal of H+ from the coccolith vesicle appear to present few energetic or kinetic constraints. However, the large sustained transcellular fluxes of Ca2+ required for calcification probably occur via a pathway that does not involve diffusion across the cytoplasm.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3