Developing controlled environment screening for high-temperature tolerance in cotton that accurately reflects performance in the field

Author:

Cottee Nicola S.,Bange Michael P.,Wilson Iain W.,Tan Daniel K. Y.

Abstract

In this study we investigated the heat tolerance of high yielding Australian cotton (Gossypium hirsutum L.) cultivars using a multi-level approach encompassing physiological assays and measurements of performance. Two cultivars with known field performance were evaluated for heat tolerance under optimal (32°C) and high (42°C) temperatures in a growth cabinet with a cell membrane integrity assay. Impacts of temperature on growth were evaluated with leaf level measurements of gas exchange and chlorophyll fluorescence. To extend the multi-level approach, the expression of a Rubisco activase regulating gene (GhRCAα2) was also determined. Consistent with previously determined differences in the field, cultivar Sicot 53 outperformed Sicala 45 for the cell membrane integrity assay; this finding was reflective of cultivar differences in gas exchange and chlorophyll fluorescence. Cultivar differences were also consistent for expression of GhRCAα2, which may also help explain differences in physiological performance, particularly photosynthesis. This study reaffirmed that physiological and molecular assays were sufficiently sensitive to resolve genotypic differences in heat tolerance and that these differences translate to physiological performance. By comparing performance under high temperatures in the growth cabinet and field, this approach validates the use of rapid screening tools in conjunction with a multi-level approach for heat tolerance detection.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3