Water use and water-use efficiency of chickpea and lentil in a Mediterranean environment

Author:

Zhang H.,Pala M.,Oweis T.,Harris H.

Abstract

Water supply is a major constraint to crop production for both chickpea and lentil in West Asia and North Africa, both of which have a Mediterranean climate. This study examined water use and water-use efficiency of chickpea and lentil from 3 experiments over 12 seasons, 1986–87 to 1997–98, in northern Syria. The strongest determinant of grain yield of chickpea and lentil and their water use under rainfed conditions is rainfall and its distribution. Large inter-seasonal fluctuations in weather resulted in larger inter-seasonal fluctuations in water use, and therefore in production of legumes. Seasonal evapotranspiration (ET) was significantly correlated with seasonal rainfall for both chickpea and lentil. Mean ET over 12 seasons was 268 mm for chickpea and 259 mm for lentil. The depth of extraction was, on average, 120 cm for chickpea and 80 cm for lentil. The average extractable soil water was 125 mm for chickpea and 90 mm for lentil over 12 seasons. For lentil, water-use efficiency for dry matter (WUEdm) and for seed yield (WUEgr) was 13.7 and 3.8 kg/ha.mm, respectively; for chickpea, WUEdm and WUEgr, 8.7 and 3.2 kg/ha.mm, respectively. Supplemental irrigation can significantly increase grain yield of both chickpea and lentil. However, there was less increase in grain yield in the wet seasons than in the dry seasons. Estimated soil evaporation was 80 mm for lentil and 105 mm for chickpea. The average transpiration efficiency was 7.1 kg/ha.mm for lentil and 6.4 kg/ha.mm for chickpea. Estimated potential transpiration efficiency for seed yield was 11.8 kg/ha.mm for lentil and 12.2 kg/ha.mm for chickpea. Both the average water-use efficiency and potential transpiration efficiency for lentil and chickpea were lower than those for cereals. Despite this, the rotation benefits and higher economic return provide the potential for these legumes to replace fallow or to break continuous cereal cropping in the region's farming system.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3