Hydrogen Bonding of O-Ethylxanthate Compounds and Neutron Structural Determination of C–H···S Interactions

Author:

Macreadie Lauren K.,Edwards Alison J.,Chesman Anthony S. R.,Turner David R.

Abstract

A range of ethylxanthate (EtXn) salts, containing either protic or aprotic cations (guanidinium (1), methylammonium (2), dimethylammonium (3), trimethylammonium (4), tetramethylammonium (5), tetraethylammonium (6), and tetrapropylammonium (7)), have been synthesised and structurally characterised. The cations in these compounds differ in their degree of hydrogen-bonding ability, i.e. the number of donor groups, with significant structural consequences. Compounds 1–4 contain cations that are able to form N–H···S hydrogen bonds, with six, three, two, and one donor groups in 1–4 respectively. The number of donor atoms affects greatly the dimensionality of the hydrogen-bonding networks in the solid state. The structure of 1 has a 3-D hydrogen-bonding network, 2 and 3 form 2-D sheets and 1-D chains respectively, whereas the lone NH donor group in 4 has strong hydrogen bonding only within a discrete cation–anion pair. The tetraalkylammonium salts 5–7 have no strong hydrogen bonding, with only C–H···S and C–H···O interactions possible. To determine unambiguously the presence of such interactions, single-crystal Laue neutron diffraction data were obtained for compound 5, providing a fully anisotropic model, which can be used to rationalise potential close interactions in the other structures. The neutron structure of 5 confirms the existence of C–H···S hydrogen bonds, with the H···S distance falling well within the sum of the van der Waals radii of the atoms. The close-packing in 5–7 is mediated solely through these weak interactions, with the size of the cations influencing the structures.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3