Why copper and zinc are ineffective in reducing soil urease activity in New Zealand dairy-grazed pasture soils

Author:

Adhikari Kamal P.,Saggar Surinder,Hanly James A.,Guinto Danilo F.,Taylor Matthew D.

Abstract

Micronutrients copper (Cu) and zinc (Zn) have the potential to inhibit soil urease activity (UA) and reduce ammonia (NH3) emissions over long duration (8–12 weeks) but have not been tested for reducing NH3 losses from cattle urine deposited in dairy-grazed pasture soils. The objective of this study was to assess the effectiveness and longevity of Cu and Zn in reducing soil UA, for the use of these metals to reduce NH3 emissions from deposited urine by grazing cattle. A series of experiments were conducted to (i) assess the relationship between inherent Cu and Zn status and soil UA of New Zealand dairy-grazed pasture soils, (ii) determine the impact of Cu and Zn addition to pasture soils on soil UA and (iii) investigate how soil organic carbon (C) and other C-related textural and mineralogical properties such as clay content and cation exchange capacity influence the effectiveness of added Cu and Zn in reducing urea hydrolysis. The results showed significant positive correlations of soil total C and total nitrogen (N) with soil UA. However, there were no significant negative correlations of soil UA with inherent Cu and Zn levels. Similarly, addition of Cu and Zn to soil did not significantly reduce soil UA. However, when Cu was added to two different soil supernatants there was a significant reduction in hydrolysis of urea applied at 120 and 600 mg urea-N kg–1 soil. Additions of Zn achieved negligible or small reductions in urea hydrolysis after 120 and 600 mg urea-N kg–1 soil applications to soil supernatants. This result suggests that Cu can inhibit soil UA and urea hydrolysis in soil supernatants with potentially low C, clay and cation exchangeable base contents. However, the interaction of bioavailable Cu with labile soil organic C and clay particles leads to its inactivation, resulting in ineffectiveness in organic C-rich pasture soils. Although most of the added Zn did not complex and remained bioavailable, the observed levels of bioavailable Zn had limited effect on soil UA.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3