A field comparison of three neutron moisture meters

Author:

O'Leary GJ,Incerti M

Abstract

A study was undertaken to compare 3 neutron moisture meters (NMMs) over a range of counting times on 2 soil types in north-westem Victoria. The meters were a Pitman Wallingford 225 (WAL225), a Campbell Pacific Nuclear 503 (CPN503), and a Campbell Pacific Nuclear 501DR (CPN501). The soil types were a grey self-mulching clay and a solonised brown soil (sandy loam). The 3 NMMs exhibited different count rates in water, from 242 to 2645 counts per second. It was necessary to increase the counting time of CPN501 to 64 s to achieve a comparable performance to WAL225 at 16 s. Over the 15-month experiment, standard counts remained relatively constant for WAL225 and CPN501, but CPN503 showed pronounced variation. In field calibrations, the inclusion of depth (as a separate variable to account for neutron absorbing gradients in the soil profile) made significant improvement to the regression of all NMMs irrespective of counting time. No improvements in the calibration were achieved using density corrections from core samples for individual layers. On both soil types, WAL225 and CPN503 performed similarly to each other, with very similar residual mean squares and coefficients of determination. On the grey clay, WAL225 and CPN503 explained 77 and 88% of the variation in soil water content, respectively. CPN501 performed poorly, even with a 64 s counting time, and explained only 52% of the variation when depth was included. When depth was excluded this fell to 25%. On the sandy loam, WAL225 and CPN503 explained 76 and 74%, respectively, of the variation in soil water content. CPN501 again performed poorly with a 64 s counting time, accounting for 65% of the variation when depth was included and 33% with depth excluded. Examples of poor calibrations or none at all in water use studies are discussed and typical errors are demonstrated.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3